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We show that to explain the growth of the citation network by preferential attachment (PA), one has to
accept that individual nodes exhibit heterogeneous fitness values that decay with time. While previous PA-
based models assumed either heterogeneity or decay in isolation, we propose a simple analytically
treatable model that combines these two factors. Depending on the input assumptions, the resulting degree
distribution shows an exponential, log-normal or power-law decay, which makes the model an apt

candidate for modeling a wide range of real systems.
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Over the years, models with preferential attachment
(PA) were independently proposed to explain the distribu-
tion of the number of species in a genus [ 1], the power-law
distribution of the number of citations received by scien-
tific papers [2], and the number of links pointing to World
Wide Web (WWW) pages [3]. A theoretical description of
this class of processes and the observation that they gen-
erally lead to power-law distributions are due to Simon [4].
Notably, the application of PA to WWW data by Barabasi
and Albert helped to initiate the lively field of complex
networks [5]. Their network model, which stands at the
center of attention of this work, was much studied and
generalized to include effects such as presence of purely
random connections [6], nonlinear dependence on the
degree [7], node fitness [8], and others ([9], Chap. 8).

Despite its success in providing a common roof for many
theoretical models and empirical data sets, preferential
attachment is still little developed to take into account
the temporal effects of network growth. For example, it
predicts a strong relation between a node’s age and its
degree. While such first-mover advantage [10] plays a
fundamental role for the emergence of scale-free topolo-
gies in the model, it is a rather unrealistic feature for
several real systems (e.g., it is entirely absent in the
WWW [11] and significant deviations are found in citation
data [10,12]). This motivates us to study a model of a
growing network where a broad degree distribution does
not result from strong time bias in the system. To this end
we assign fitness to each node and assume that this fitness
decays with time—we refer it as relevance henceforth.
Instead of simply classifying the vertices as active or
inactive, as done in [13,14], we use real data to investigate
the relevance distribution and decay therein and build a
model where decaying and heterogeneous relevance are
combined.

Models with decaying fitness values (“‘aging’) were
shown to produce narrow degree distributions (except for
very slow decay) [15] and widely distributed fitness values
were shown to produce extremely broad distributions or
even a condensation phenomenon where a single node
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attracts a macroscopic fraction of all links [16]. We show
that when these two effects act together, they produce
various classes of behavior, many of which are compatible
with structures observed in real data sets.

Before specifying a model and attempting to solve it, we
turn to data to provide support for our hypothesis of decay-
ing relevance. We use here the citation data provided by the
American Physical Society (APS) which contains all
450084 papers published by the APS from 1893 to 2009
together with their 4 691 938 citations of other papers from
APS journals. It is particularly fitting to use citation data
for our work because ordinary PA with direct proportion-
ality to the node degree was detected in this case by
previous works [10,17]. Data analysis according to [18]
reveals that the best power-law fit to the in-degree data has
a lower bound k.;, =50 and exponent 2.79 * 0.01.
Though p values greater than 0.10 are only achieved for
kmin = 150, log-normal distribution does not appear to fit
the data particularly better. Since PA can be best imagined
to model citations within one field of research, we consider
in our analysis also a subset of papers about the theory of
networks. We identify them using the PACS number
89.75.Hc (“Networks and genealogical trees”’)—in this
way we obtain a small data set with 985 papers and 4395
citations among them.

Denoting the in-degree of paper i at time ¢ as k;(z)
and assuming that during next Az days, C(z, At) new
citations are added to papers in the network, preferential
attachment predicts that the number of citations received
by paper i is Ak;(t, At)ps = C(t, Ak, (£)/3;k;(2). If in
reality, Ak;(z, Ar) citations are received, the ratio between
this number and the expected number of received citations
defines the paper’s relevance

Ak;(t, At) Y k(¢
X,( Ar) = (6, A k;(1)
C(t, At)k, (1)
This expression is obviously undefined for k;(r) = 0 which
stems from the known limitation of the PA in requiring an

additional attractiveness factor to allow new papers to gain
their first citation. Although one could try to include this
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effect in our analysis, we simply compute X;(z, Af) only
when k;(r) = 1. Similarly, we exclude time periods when
no citations are given and C(z, A7) = 0.

Figure 1 shows how the average relevance of papers with
different final in-degree values decays with time after their
publication. We see that the relevance values indeed decay
and this decay is initially very fast (for papers with the
highest final in-degree, it is by a factor of 100 in less than
three years). However, the exponential decay reported in
[19] appears to have only very limited validity (up to five
years after the publication date). After 10 or more years,
the decay becomes very slow or even vanishes, producing a
stationary relevance value r,. Figure 2 depicts the distri-
bution of the total relevance X;(i) = Y, X;(¢) and shows
that, perhaps contrary to one’s expectations, this distribu-
tion is rather narrow with an exponential decay for X; =
25 X 103. An exponential-like tail appears also when the
analysis is restricted to papers of a similar age which means
that it is not only an artifact of the papers’ age distribution.
One could attempt to fit this data with, for example, a
Weibull distribution as in [20]. We shall see later that it
is the tail behavior of X; that determines the tail behavior
of the degree distribution; hence, the current level of detail
suffices for our purpose. We can conclude that in the
studied citation data, relevance values exhibit time decay
and papers’ total relevances are rather homogeneously
distributed, showing an exponential decay in the tail.

Now we proceed to a model based on the above-reported
empirical observations. We consider a uniformly growing
undirected network which initially consists of two con-
nected nodes. At time ¢, a new node is introduced and
linked to an existing node i where the probability of
choosing node i is

k;(t)R;(1)

PO =5t R, @)

(2)

which has the same structure as assumed before in [15,19].
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FIG. 1 (color online). Time decay of the average relevance
values (based on Ar = 91 days) for papers divided into groups
according to their final in-degree. The dashed line shows X = 1
indicating exact preferential attachment and open circles show
the initial relevance values. The inset shows results for papers
about the theory of networks.

Here k;(t) and R;(7) is degree and relevance of node j at
time ¢, respectively [21]. Our goal is to determine whether
a stationary degree distribution exists and find its func-
tional form.

Equation (2) represents a complicated system where
evolution of each node’s degree depends not only on the
node itself but also on the current degrees and relevances of
all other nodes. The key simplification is based on the
assumption that at any time moment (except for a short
initial period), there are many nodes with non-negligible
values of k;(#)R;(¢). The denominator of Eq. (2) is then a
sum over many contributing terms and therefore it fluctu-
ates little with time. This allows us to approximate the
exact selection probability P(i, ) with

k;(t)R;(1)

P(i, 1) ZT(I)’

3)

where ()(7) is now just a normalization factor.

If R,(r) decays sufficiently fast (faster than 1/f) and
lim,_,R;(f) = 0, the initial growth of ()(¢) stabilizes at
a certain value ()" which shall be determined later by
the requirement of self-consistency. The master equation
for the degree distribution p(k;, r) now has the form
plk t + 1) = (1 — kR(1)/ Q") p(k;, 1) + (k; — DR ()X
p(k; — 1, 1)/Q7. Note that the stationarity of p(k;, 7) in our
case is due to transition probabilities that vanish because
lim,_R;(t) = 0. Before tackling the degree distribution
itself, we examine the expected final degree of node i, (k¥').
By multiplying the master equation with k; and summing
it over all k;, we obtain a difference equation (k;(r + 1)) =
ki (o)1 + R;(1)/ Q7). If R;(¢) decays sufficiently slowly,
we can switch to continuous time to obtain d{k;(t))/dt =
(k;i(1))R;(1)/ Q2 which together with (k;(z;)) = 1 yields

<m=wdlﬁ%m@. )

Q*

FIG. 2 (color online). The distribution of the total relevance X
in the studied data. For X = 25X 10°, f(X;) decays as
exp[—aX;] with @ = (21.7 £0.2) X 1073 (denoted with the
indicative dashed line). The peak at X7 = 0 is due to approxi-
mately 60000 papers without citations. The inset shows results
for papers about the theory of networks.
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Here ¢; is the time when node i is introduced to the system
(in our case, t; = ). When the continuum approximation is
valid, this result is well confirmed by numerical simula-
tions (see the inset in Fig. 3). To observe saturation of the
degree growth for an infinitely growing network, the total
relevance 7; := [ o R;(1)dt must be finite and hence R;(?)
must decay faster than 1/7 for all nodes. To assess the error
of the continuum approximation, one can use the Taylor
expansion to write (k;(t + 1)) — (k;(2)) = d{k;(t))/dt +
3d*(k;(1))/d*. The second derivative term can be approxi-
mately evaluated using Eq. (4) and it can be shown that it is
negligible when |R;(1)| < R;(1), which is consistent with
our initial assumption that R,(r) decays sufficiently slowly
for all i.

Since )" is the same for all nodes, Eq. (4) demonstrates
that a node’s expected final degree depends only on its
total relevance T;. Therefore we can use the continuum
approach to compute " directly from its definition as
Q* = [o(T)QT))dT where (QU(T)) = lim,_o, [{ R(r —
to)(k(t — to))dty = [ R(Ok(D))dt = Q* (/Y — 1), asiif
there were only one node with total relevance 7 which
contributes to (Q)(T)) with R(z){k(z)) for each t. When o(T)
is given, the resulting equation

[ o(T)e!/ ¥ gr =2 (5)

can be used to find ()*. Alternatively, the construction
constraint of the average network’s degree in the large
time limit, (k) = 2, implies [ @(T)(k"(T))dT = 2 which
gives the same equation for *. Note that when o(T)
decays slower than exponentially, the integral in Eq. (5)
diverges and no {)* can satisfy the system’s requirements,
implying that in this case no stationary value of Q" is
established.
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FIG. 3 (color online). Simulation results for the studied model
where R;(f) = R;(0)e=AU=%) (1, is the time when node i entered
the network), R;(0) values are drawn from an exponential
distribution, and the final number of nodes is 10°. Since the
decay is the same for all nodes, distributions of R;(0) and T; have
the same functional form. The indicative dashed line has the
slope of —3. The inset shows the dependency between BT and
the average node degree; the dashed line follows from Eq. (4).

Similarly to (k;(¢)), degree fluctuations for nodes of a
given total relevance can be derived from the master equa-
tion. When |R;(¢)| < R;(t), the continuum approximation
can be again shown to be valid and yields

d(k?)/dt = R;(t)((k; (1)) + 2(k3(1)))/ Q% (6)

where (k?(0)) = 1 and which can be solved for general
R;(7) to obtain the stationary standard deviation of the
node’s degree

U'k(Ti) — (ezT,-/Q”’ _ eT,-/Q*)l/z. 7

When T; = T for all nodes, Eq. (5) implies ¢7/?" = 2 and
therefore o, = V2. We see that the resulting degree dis-
tribution f(k) is very narrow which is not the case in most
real complex networks. One has to proceed to heteroge-
neous 7; values.

Since the distribution f(k;|T;) is very narrow, one can
use the distribution O(T) together with Eq. (4) and
f(k)dk = o(T)dT to obtain the degree distribution f(k).
If T; are drawn from a distribution with finite support, the
support of f(k) is also finite which is not of interest for us
(though it may be appropriate to model some systems). If
T; follow a truncated normal distribution (the truncation is
needed to ensure 7; = 0 and (k;) = 1), it follows immedi-
ately that f(k) is log-normally distributed which may be of
great relevance in many cases [18,22]. We finally consider
T; values that follow a fast-decaying exponential distribu-
tion o(T) = a exp[—aT] which is supported by the analy-
sis of citation data presented in Fig. 2. By transforming
from o(T) to f(k), we then obtain f(k) ~ k=1~ From
Eq. (5) it follows that in this case is 0* = 2/«; hence, the
power-law exponent is y = 3. We see that even a very
constrained exponential distribution of 7 leads to a scale-
free distribution of node degree—the exponent of this
distribution is in fact the same as in the original PA model.
As shown in Fig. 3, numerical simulations confirm that this
result truly realizes in a wide range of parameters.

Motivated by Fig. 2, one may ask what happens when T
is exponentially distributed only in its tail. We take a
simple combination where 1 — ¢ of all nodes have T = 1
and the remaining nodes follow the exponential distribu-
tion o(T) = ¢~ "=V for T € [1; ). By the same approach
as before, we obtain the equation for (0* in the form
e — g+ q/(1 —1/Q%)] =2 which yields power-
law exponents monotonically increasing from 2.44 (for
g = 0) to 4.18 (for ¢ = 1). The reason for the exponent
decreasing as ¢ shrinks is that when ¢ is small, every node
with a potentially high exponentially distributed 7 value
has few able competitors during its life span and therefore
it is likely to acquire many links (more than for ¢ = 1). At
the same time, as g decreases, the power-law tail contains a
smaller and smaller fraction of all nodes and becomes less
visible. This example further demonstrates flexibility of the
studied model which is able to produce different kinds of
behavior depending on the input parameters.
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It is easy to show that as long as R;(¢) values decay faster
than 1/1, the growth of k;(¢) is sublinear and the condensa-
tion phase observed in [16] is not possible despite 7 having
an unlimited support. However, in the system numerically
studied in Fig. 3, deviations from the scale-free distribution
of node degree appear when f3 is small. This happens when
the characteristic lifetime of a node 1/ is so long that the
decay cannot compensate for the unlimited support of
o(T). To get a qualitative estimate for the value of B
when these deviations appear, we use the following argu-
ment. If the final degree distribution is a power law with
exponent vy, we expect (k) to grow as /"D =/
(here we use that the number of nodes equals ). When a
node with a sufficiently high relevance appears, the system
can undergo a temporary condensation phase where this
node acquires a finite fraction of links during its lifetime.
To avoid a deviation from the power-law behavior, this
lifetime must not be longer than (k,,,,), hence 8 < 1/4/1.
As t goes to oo, B can be arbitrarily small and yet no
deviations appear. This confirms that in the thermodynamic
limit, the condensation phase is not realized in our model.

The key formula (4) builds on the assumption that
fluctuations of €(r) are small enough, and the degree
distribution results hold if the effective lifetime of nodes
is long enough (a short-living node cannot acquire many
links regardless of its total relevance). These two assump-
tions are in fact closely related: when the effective lifetime
of nodes is long, then at any time step there are many nodes
competing for the incoming link and the time fluctuations
of Q(¢) are hence small. To evaluate the effective lifetime
of node i, 7;, we use the participation number

oo 2 R(1)?
l SR R(1)?

When 7,> 1 for all nodes, ()(¢) fluctuates little.
Numerical simulations show that var({}) is indeed propor-
tional to the effective lifetime for a wide range of decay
functions R(z), confirming its relevance in the present
context. In conclusion, our analytical results are valid
when all the obtained conditions [R;() decreasing faster
than 1/¢, |R,(1)] < R;(1), and 7; > 1] are fulfilled.

To summarize, we studied a model of a growing network
where heterogeneous fitness (relevance) values and aging
of nodes (time decay) are combined. We showed that in
contrast to models where these two effects are considered
in isolation, here we obtain various realistic degree distri-
butions for a wide range of input parameters. We analyzed
real citation data and showed that they indeed support the
hypothesis of coexisting node heterogeneity and time de-
cay. Even when our model is more realistic than the
preferential attachment alone, it neglects several effects
which might be of importance in various systems: directed
nature of the network, accelerating growth of the network,
gradual fragmentation of the network into related yet

~ 12/ [0 ¥ R(1)2dt. )

independent fields, and others. Note that the very reason
for the exponential tail of the total fitness value 7, though it
is crucial for the resulting degree distribution, is not
discussed here at all—yet we have empirical support for
it in our data. Also the case when the normalization )(¢) in
Eq. (2) does not have a stationary value [because
lim,_,R;(f) > 0 or o(T) decays slower than exponentially]
is open. Finally, note that while we focused on the degree
distribution here, there are other network characteristics—
such as clustering coefficient and degree correlations—that
deserve further attention.
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